Excretory/Secretory-Products of Echinococcus multilocularis Larvae Induce Apoptosis and Tolerogenic Properties in Dendritic Cells In Vitro
نویسندگان
چکیده
BACKGROUND Alveolar echinococcosis, caused by Echinococcus multilocularis larvae, is a chronic disease associated with considerable modulation of the host immune response. Dendritic cells (DC) are key effectors in shaping the immune response and among the first cells encountered by the parasite during an infection. Although it is assumed that E.multilocularis, by excretory/secretory (E/S)-products, specifically affects DC to deviate immune responses, little information is available on the molecular nature of respective E/S-products and their mode of action. METHODOLOGY/PRINCIPAL FINDINGS We established cultivation systems for exposing DC to live material from early (oncosphere), chronic (metacestode) and late (protoscolex) infectious stages. When co-incubated with Echinococcus primary cells, representing the invading oncosphere, or metacestode vesicles, a significant proportion of DC underwent apoptosis and the surviving DC failed to mature. In contrast, DC exposed to protoscoleces upregulated maturation markers and did not undergo apoptosis. After pre-incubation with primary cells and metacestode vesicles, DC showed a strongly impaired ability to be activated by the TLR ligand LPS, which was not observed in DC pre-treated with protoscolex E/S-products. While none of the larvae induced the secretion of pro-inflammatory IL-12p70, the production of immunosuppressive IL-10 was elevated in response to primary cell E/S-products. Finally, upon incubation with DC and naïve T-cells, E/S-products from metacestode vesicles led to a significant expansion of Foxp3+ T cells in vitro. CONCLUSIONS This is the first report on the induction of apoptosis in DC by cestode E/S-products. Our data indicate that the early infective stage of E. multilocularis is a strong inducer of tolerance in DC, which is most probably important for generating an immunosuppressive environment at an infection phase in which the parasite is highly vulnerable to host attacks. The induction of CD4+CD25+Foxp3+ T cells through metacestode E/S-products suggests that these cells fulfill an important role for parasite persistence during chronic echinococcosis.
منابع مشابه
Identification of excretory-secretory products from larval stages of Ostertagia circumcincta cultured in vitro by SDS-PAGE and immunoblotting
Exsheathing fluid (EF) and excretory-secretory products (ES) of infective third-stage cultured larvae ofOstertagia circumcincta were analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDSPAGE). Five and seven predominant proteins were found in the EF and ES products, respectively. Immunoblotting by sheep pre-infection serum did not react with any of the EF and ES proteins, b...
متن کاملTrichinella spiralis Excretory–Secretory Products Induce Tolerogenic Properties in Human Dendritic Cells via Toll-Like Receptors 2 and 4
Trichinella spiralis, as well as its muscle larvae excretory-secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs pheno...
متن کاملEmTIP, a T-Cell Immunomodulatory Protein Secreted by the Tapeworm Echinococcus multilocularis Is Important for Early Metacestode Development
BACKGROUND Alveolar echinococcosis (AE), caused by the metacestode of the tapeworm Echinococcus multilocularis, is a lethal zoonosis associated with host immunomodulation. T helper cells are instrumental to control the disease in the host. Whereas Th1 cells can restrict parasite proliferation, Th2 immune responses are associated with parasite proliferation. Although the early phase of host colo...
متن کاملالقای سلولهای دندریتیک تولروژن موشی با تنظیم کاهشی ملکول کمک تحریکی CD40 با استفاده از وکتور لنتی ویروس
Induction of Tolerogenic Murine Dendritic Cells by Downregulating the Co-stimulatory Molecule of CD40 Using Lentivirus Vector Mahmoodzadeh A1, Pourfatollah AA1, Karimi MH2, Moazzeni SM1 1Dept. of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 2Transplantation Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Correspond Aut...
متن کاملApoptosis as a Potential Target in Therapeutic and Vaccine Interventions against Parasitic Diseases
Apoptosis is a physiological cell death that occurs under normal conditions in major biological processes, including the removal of old, damaged, extra, or harmful cells. It plays an important role in natural evolution, tissue homeostasis, removal of cells damaged or infected by viruses, and removal of immune cells activated against self-antigens. The purpose of this review was to examine the r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2012